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'PERMUTATIONS AND Comp

= gtations. The different arrap
. some or all of them at a time are cq)jeq
(o ¢ symbol "P, is used to denote

th .
: € number of permutations of » things taken r at a time.
nd the value of "P

k ’ ' The number of permutations of » things taken » at a time is the same
oy r places in a row can be filled with differen

t things,
" guppose that we have n things. The first

\ place can be filled b i
B o< # ways of filling up the fire S i up by any one of these n things.

hen the first place has bee_n filled up by any one of the n ways, we are left with (s -
pdany one of them can be _puf in the second place, Therefore the second place can be fi
f- 1) ways. So by the principle of Association, the number of ways of filling
e is m(n — 1).

~ When the first two places' have been filled up in any one of the n(n — 1) ways, then we are left
with (n — 2) things. So the third place can be filled up in (n = 2) ways.

;r;.:-'._,:; principle of Association, the number of ways of filling up the first three places is
f1-1) (n - 2). .

INATIONS

Bements that can be

made with a given number of things
Permutations ;

"

as the number of ways in

1) things
lled up in
up the first two

veeeding in this way, the number of ways in which » places can be filled up is

"P, = n(n-1)n-2) ...,.....'uptu r factors
= nn-1(n-2)..... (n—(r-1)
=nn-1DN-2) . (n=r+1)

[ Therefore 7P = (1)
Forexample 7P, = 7 x 6 x 5 x 4 = 840
% 5P4=5x4>¢33‘2=120

;"=n. "P. = "P =n(n—1)n-2) ... to n factors
= (= 1)1 =2) oo (A= (1 =1))
= nn—1)n=2) .. |
gl = nl
30 i bl n!
j:-tﬂpm‘ﬁ:ﬁ'lat np = ”xn—lpr_n]:-(-;:?)—! o
e . B e T n—r
Lo im s ’;(:(n_l:::n_; ,,,,,,, (n=r+D}{n=r)a=r=1)...3-2:1}.
- (n=-r)n-r=1.:.3:21
n!
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RHS. = nx P

i .__j__’_’_:__l‘)_i___ " Phie n!
(e D) e
n(n-N!_ n!
(m=r  (n=r)
Tl
P, ® axTE (n=r)!
Example 1. Find the value of p,
Solution.
l!plI = 12x |l x10%x9
= |1880
Example 21" 'P,:"*'P, =5 : 12, find the value of .
Solution.
n-1 P3 B 5
n+l P] 12
(n-)(n-2)(n-3) _ 35
o (n+1) n(n—1) 12
. (n=2)n-3) 5
Simplifying T 2
Cross-multiplying , 12(n* - Sn+6)=35n(n+ 1)
= 12n — 60n + 72 = 51 + 5n
= T -65n+72 = 0 |
+./(-65)° —
. | 652y(-65)" -4(7)(72)
2x7
_ 5241 9
14 ® .3
e A ,
Rejecting 5 8snisa+ve integer,
Hence n = 8.
Example 3. In how many ways can the letters of 'Lahore' be arranged ?
Solution,

Total number of letters in the word Lahore = 6
These are all different letters.

Number of arrangements of these. letters taken all at a time
“P=6!=720,

Example 4. How man

_-that the vowels are never-together ?
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k ':-_-.:'_é foll qumber of letters in the "'f'““' DAUGHTER s 8, Ihese 8 letiers are all different,
1 ” Sl fet s find those arrangements in which vowels are inlways together.

; ll e (he wn\'cls‘ﬂ;.ql": “ﬁ:“';‘: “:’*}V“}’i‘ topether, they can be supposed (o be put in a bracket
4 reated a8 one 1€ ter (A, 15, U). So the number of lettery’ becomes 6,

. @ 3D OGILTRAE L)

; ’ ;‘hl:ﬂ‘ ¢ letters can be arranged in "7, ways = 61 ways

!_':; Now the (hree letters in the group (A, I, U) can be arranged among themselves in '7, 3!
q w

g “ g R._-quiﬂ?d numbers of such words = 6! 31 = 720 » 6 ~ 4320,
A4 ool pumbers of arrangements of letters of the word DAUGIHTER is 8!
4 . Number of words in which vowels are never together
! ; ' Total number of words — Numbers of words in which vowels are always together
| ..' - 31 - 4320

: - 40320 — 4320 = 36000,

1 EXERCISES
, .;i How many different words can be formed with the letters of the word ‘LUCKNOW™?
42 povethat 27, = 10305 0 2n-1)- 2",
s \:‘Findﬂ ir® ‘1'.\”‘1 g IPQ =14:1,
4 ¢ Inhow many ways 5 books on English and 4 books on Hindi can be placed on a shelf so that

| the books on the same subject always remain together?
& How many words can be formed out of the letters of the word ‘ORIENTAL’ so that no two of

4 the vowels are together?

£
Lo ANSWERS
4 L7 =5040
g La2
s..*..{f:.f 415p, = 2880. -
4 Combinations : The different selections or groups that can oe made out of a given number of

called combinations.

e laking some or all of them at a time are ) _
ber of combinations of » things taken r at a time.

. The symbol "C_is used to denote the num

4" find the value of "C
4, 't number ul'cumbinatic;ns of n things taken r at a ime is denoted by "C,. Let these combi-
Lo ¢ X Because each combination contains » things and these r things in any one of the
e, 2lions can be arranged among themselves in r! ways (as we know by permutations). Hence
R bination wil] give rise to r! permutations. So x combinations will give rise to x - r! permu-
But the number of permutation of n things taken r at a time is "P_.
"p = x-rl="Crl

AL

& 1
pz Vg oo
"._ M'_-.-‘ . = — ——
o (n=n)tr!
n!
o O
ri(n=r)!
acr Gy "Cn-r'
n!
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6(20) + 6= 11r+ |1 ne 2
12+ 6= 11ri1]| e
,-‘-5. I I(]
g 10 PR 5

; EXERCISFS
3 l:valllﬂlf (1) '“(--w (i) Im{ .lm
| S "Pr 1 and ”(“r . ”Cr- It find nand r,

, 1-3.5. (2n-
e O R s N g L. &h - I}
B v that 7'C, = il
iy Prot ! n!

ANSWERS
(i) 3921225

S

fmbabilir}' means chance. or possibility occurrence of some event.
| paperiment. An experiment is defined as a process of well-defined outcomes.

experiment. A random experiment is defined as an experiment in which all possible
wicomes are known in advance.

or example, If we toss a coin we will either get head or tail.

| o, in throwing of a dice there are 6 possibilities 1 or 2 or 3 or 4 or 5 or 6.

~ Sample space. The sample space of a random experiment is the set of all possible outcomes.
| For example,

I Random Experiment ‘ Sample Experiment

Throwing of a fair dice §=1{1,23.4,5,6}

Tossing of a coin - §={H.T}
- § = {HH, HT, TH, TT}

s = {BB, BG, GB, GG]
vent is called simple event, if it contains
die, the event A of getting 3 is a simple

Tossing of two coins
e A family of two children
| Event. An event is a subset of sample space. An €

:hi.d”.--t

W
!

70n¢ sample point. In the experiment of throwing a

expci'imem are called equally likely, if all
sing of a coin the outcomes head and tail

f;.;-“-g-q-"" likely outcomes. The outcomes of a random
B have equal preferences. In the experiment of tos
-'-:s.ai ally likely, |

. Austive o mes of random €Xpe
Hlthe utcomes. The outco st o s

.-’i%?“ime outcomes of the experiment. In !
el

riment are called exhaustive if they cover
the outcomes 1,2,3, 4,5, 6are

R e

{ there are n equally likely, exhaustive outcomes

urable to the happening of it.
the event A 1 defined as

e -m-a" Event and there are m outcomes _favo
o the probability P(4) of the happening of

Py
o =
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Changing rton

b:mm,-;;'t' 1. Evaluate ¥C .

r we get
n!

nee e ——

L (n - n—(n=r))

n!

(n-r'r!

y LT R Hence the result.

Solution.
|50 _ 5049-48{47
S0 = S0 = S0C -
) 50 47 ) |_3,|__ E.m
.49.48
018 . 19600,
3:2:1
Example 2. 1f "C\, = "CI o find the value of ¥C,,
Solution:
Given " = "Cs
Either 10 =15 or 10 +15=n [v "6, =7C,,
But 10 = 15 is impossible

Son=10+15

Now we have to calculate ¥'C, i.e., 2"'t':'zs

So

Example 3. If "™'C

Solution,

Scan ned with CamScanner
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| =

; o
£ ;

(n+Dn! rl

= 25

27! 27-26-25!

27 =
Cs = 351217 251 21
27-26
= — =35
2.1
nc,. = 351,

4 1"C,=11:6and "C,: ™IC

n+lcr+| B 1_,1_ "t',. ~ 6
"Cr - 0 and n=l C_r—l - E
(n+1)! n
D+ +D} 1y r|n—r IR
B g WMTeep - T F
Fi(n-r)! (r=DY{(n-1~(r-D}!

(n+)! Pl(n=r)! n _ln =D
e T e Y i T ;
(n+)! r! _n n!(r—l)!
r+Dtnl ~ 6 ™ Hay 2

d n(n=1!(r-1)!
r(r=D! (n=1)!

11
(r+D)rtm ¢ 20 =2

n+1_ 11 n

1 =613, find the values of n andr.
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Total no. of rﬂu_.uruhlc cases in the happening Dm

aif P(A) = 7 raml no. of equally likely exhaustive cases

It is clear from the definition that

m |
0<me<h — 0 < g <

-y 0 ¢ P(A) < I
The number of cases favourable to the non-happening of the event A is p, ».
n-m

Pinot A) = T

|

|
0
——
-
S

P(A) = 1 =PA) (4 = not A)

1l

= P(A) + P(A4)
Example 1. What is the probability of getting an even number in the throw of an Unbiaseq

Solurtion. _ _ ‘ ey
In this experiment, there are 6 equally likely possible outcomes, i.e., {1,2, 3, 4,5,6) x

A be the event of getting even number,

A= {2,4,6}
Favourable cases = 3
Total no. of cases =6
3 1
e =g
Example 2. Find the probability of getting the sum 10 in a single throw of two dice.
Solution.
Here 8= 41, 1), (1,2), (1: 3) ... (6, 3),(0,.6)}

No. of possible outcomes are 6 x 6 = 36
Let A be the event of getting sum 10

_ A = {(4,6), (5, 5), (6,4)}
Favourable cases =3
-y ¢
P(A) = % = 2"

Example 3. Find the probability of getting a ‘King’ or ‘Queen’ in a single draw from 1%
shuffled pack of playing cards. .
Solution.

Let A be the event of getting a King or a Queen in the draw.

No. of favourable cases for happening of the event A is 4 +4 =8

Total number of cases = 52

8.2
LB T |
EXERCISES :

1. Find the probability of getting an odd number in a single throw of 2
2. Find the probability of getting a number less than 2 in a single throw © a

- Bcanned with CamScanner -
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Total number of sample points in A or B : N
= m +my-m

”?l l'"’? H-‘l"l, i f"l ”'1 ’"1'
o) = S o ST S P b

Example 1. The prnhuhllity that a company executive will travel by bus |s 4

3 0 gy

he,,
travel by train is E' Find the probability of his travelling by
Solution.

Let:A4 = the event that the company executive travels by bus

bus or lram

PA) = 3

Let B = the event that the company executive travels by train

P(B) = :
Events in this question are mutually exclusive because eit
The probability of his travelling by bus or by train
P B) = P(A) + P(B 2 ] L |
+ = — —_— I —
(4 or B) = P(4) + P(B) AIRRTE

Emmp.'e 2. One number is drawn from numbers 1 to 1
either divisible by 3 or 5,

her he can trave] by by or by .

50. Find the probabiliy iy,

Solution.
Here S =1{L2,3, ..., 149, 150}
Let A = the event that number is divisible by 3
A = {3,6,9,...., 147, 150}
-~ 50 '
P(A) = Eﬁ
B = The event that the number is divisible by 5
B = {510, 15, ....., 145, 150}
30
“HE) * 10 1
The events are not mutually exclusive because some points are common to both A md3
The common pomts are 15, 30, 45, ......., 150.
So = £15:30, 4%, ... 135, 150}
ll]
P(AB) 150

So by the Addition theorem

P(A or B) = P(4) + P(B) - P(AB)
030 10 _7w_7
150 150 150 150 15

Hence the result,

EXERCISES A £in [}f_i ]
1. A bag contains 30 balls numbered from 1 to 30, One ball is drawn at rancc 3
probability that number of the ball is a multiple of 5 or 6. -

--scanned with CamScanner
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7, simultancous 10ss of two cojyg o

ii iy ) rmd "1
nd lhlc Pmb“:‘;’ll);l?l(;gclllng no head iy uc "ﬂhahilil‘y of gettjp Y
| hm"lis ]i:glrnhilily ‘lilu::":I ﬁ‘tl!m“n box conyy 1?1; 1058 Of thre cgi:: etly two heads.
e c 1¢ ball ¢ A whi v
T m;nﬁ‘ i Urnwp iy red e, 7 red and |
' 2 black balls, p

. Deter-

&
i

__ I
- N 6
2 1 R "
|4 MUTUALLY EXCLUSIVE gypare ?
e s are said to be TR
" 1:lwm;rlr:nt of rollin “fgiulm:lly exclusive events if pogp cq
"-'i"w I experi .g C, the events 4 = (13} 305 fi ot occur together with same
B In the same experiment, the events 4 = (1, 3} and C..'[2. 4, 6} are mutually exclusive
*sive events because if 3 appears on the gje itis favourable t.u ii:nh],d i j} i
and

-~ Addition Theorem (For mutually-exclusive events). If 4 and g .
{ary associated with a random €xperiment, then are two mutually exclusive
-

E PAor BY=P (4).+ pp
proof: Let n be the total number of exhaustive, equally =
et m, and m, be the number of cases favourable to
ggectively.

likely cases of the experimeént.
he happening of the events 4 and & -"_:_

P(A) =

P(B) =

£ the events are given' to be mutually exclusivz, so there will be no sample point common 0
oih events A and B. , 3

The event A or B can happen in exactly m, + m, ways

a],;? :sl|_$

PAorB) = M2 Th T2
n n
ence  P(A or B) = P(A) I+ P(B)
Addition Theorem (For non-mutually events). If 4 an >
associated with a random experiment, then _ 35
P(4 or B) = P(A) + P(B) - P(4B) 3
of. Let n be the total number of exhaustive an

m, and m, be the number of cases favourable
vely,

= P (4) + P(B)

."If-h
d B are two non-mutually exclusive

d equally likely cases of the experiment.
to the happening of the events A and B

.|
P (A) %
m

P(B) = _r; some sample points com-

- : i ere will be
i tn'h‘ events are given to be non-mutually exclusive, th
- -‘ hﬂll‘l events A and B.

- oints
- My be the number of common sample P

my
P(AB) = o

. separately
8¢ my sample points are also included

in the events A and B

ed with CamScanner
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' 'R-S"ECTRO mitted y-ray is given, accordi 413 S
of the N v ecording (o the de Broglie relation, by Yo

p = Nk o

h. Since linear mome (63) i

qve length, SWE momentum must be conserved, the nuclens ,
jon with the recoil energy R given by . the nucleus must recoil

R = pI2M

14 = . (00)
. MAass of the recoiling Thiciels. ”.w target nucleus, too, must recoil with energy R on

9 L i ray, With (he result that Some ol the energy of the y-ray transition, £

,ﬁf.ﬂg e Y7 . Thus, for the emitting nucleus t

A ecolt enere:

F‘I

;0 18 conve rted

e hv 8 L A6T)

e absorbing nucleus (absorber)
10 E=E+R o

cee that the emission and absorption lines are centred 2K apart,
We E, = hv = helh = pe . (69)
gince
2 1 g2
iave, from EGS 66 and 69, 2R = Fy /M (10)
ﬂ :
fFor the resonance absorption to occur, I must be greater than or equal to the loss in y-ray
to r&Cﬂ'ﬂ' i'e"
aery I ~2R D)
The plot of the number of the emitted y-Tays versus energy is given in Fig. 53.
,_...-—-"-'__-___ 1 =
7]
b-
-
%
5 Ey-R Ey EytR
) (a)
&
.
(=]
o]
z A
Ey
(h)
ENERG‘I'.-E-—-—"'"
. 4 gyt oo furZR}r.
R T o 65 e absorption and emission CUrves
B & :-"'F'lg' 5{':) Irfisunmce a\iﬁorptihm:;nand:missiun curves for 2R = T+

j aide S7Fe, it is found
i pssbauver nuclide e, :
by Let us make an order-of-magnitude calculation. For the MOS e 0, o e
xlle:;%mutally.mat E, = 14-4 keV; and M =l'£=_;.~'xl 4:'0].;:, Hzll'ltciil,‘l i Eﬁ. i s
1e-ti ; - i -Tg 1 . ! s
e ;;me e e 0 T: ]lf Obvinusly, (he resonance absorption l.umhlwa.u,
: about 5% 102 eV. In other words, R>>1. o senious method 10 obtain the y-ray

", T~ s ary DR 3 :
remnl;;c:R (Eq. 71) is not obtained. Mossbauer l-}e"'lscd unt;:gr “tglui] in the form of o sphd at low
condition, He took the sample (containing }Ifﬁ _"__. ated among the lattice vibrations or th‘e

is dissiP? ) energy is lost (O recoil

- ol “In the solid the nuclear recoil enerey Lewise, ¢
.- as a Wh(ﬂe. Thus‘ mc BmlllEd T—I'E}'S have lhﬂ Bl“ﬂ'gyu -h“[r leﬂ

B with CamScanner
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. Y SIE e
s along v and y-axes, respectively; 1 = nuclear spi, and ;. l{-:."'EMIs"T ?
L

BT 412
sl ;
v aee the component ¥ R i
Ty thlll.li;::ll:,'llll'i . D, B are the zero-field splitting constants, @ jg ny ?l O
Cartesian cO i i et ing constant, Clegy ‘zapg
; is (he hyperfine coUpiinig Quag, - e
and A1 y: 3‘];-%!}:

D, E A ad Q are :!-::Icrn'ﬂncd empirically from ex erj
(he internction ol electronic Jlmr.gnclr.u moment with (e 7'_';1em, The
anisotropic, ‘The terms involving 1 and E give rise (o fine strucqyr, }LiT ﬁ(tld.ter“h
Aects of crystal field exerted via s!un«urhn.mtcractmn: The termg i It frr:h:h*?

.o hynerfine interaction are also n}nsulru;'nc, rc!\'ufl{ug I"mm. dlpulc interat:tiun- 81,
denoting ]i;'lw clectrons. The quadrupole inferaction term (for nuclei with nucjey, Spi S bepy,,
.]:,l,],-(i‘llf:r::;:ilc. The last term rupruscn.isl the :lircc:l inlcr':wuu'n f::clv.fcun '!hc nuclear n'lc‘igl'sr:lt}i'c{11f ”‘3!;»
l‘hc':z:cum:m field. Though g _is positive, Ihf.f ”.'?“"f‘}r‘.".,‘.’”ﬁ u:z:!ants drtflvﬂfy difficyly to nI;:T-cn' aﬂd'
they have to be determined from second-order ¢ LJL 8. : iI{":{tm “:‘0 "‘;1[ all the termg j, Eq. ¢x ik
cqu'ul importance for a given metal ion. For ins ‘IFC{I'" ) (D Lg ds Nno nuclear Spin, e o
containing 7 vanish. For a free electron, on the other hand, D, E, I, A, Q are all 2y ! :h::%

the

Hamiltonian assumes the form H = geuyB, where g, is now a scalar quantity.

§ is assigned a value that makes the observed number of energy level ,
qual 1,

By convention, : :
2§+ 1. In those spin systems, where only the lower energy leve!s are occupied, the higher ensi
2 the spin determined from the 25+] obsery ﬁﬁ? leves

cannot be detected experimentally. Thus, the e ° i
corresponds to a fictitious state ; hence the effective spin is sometimes referred to as “fictitioys S]Jinr"Ehi

moment
The constants &

involving # and 8 denote

are generally ani
second-order elle

MOSSBAUER SPECTROSCOPY (MB SPECTROSCOFY)
The discovery of Massbauer effect or Maossbauer spectroscopy (also known as the recoil-des

nuclear gamma resonance fluorescence (NRF) spectroscopy) in 1958 by the German physicist Ryg,e
Maéssbauer was hailed as a breakthrough in nuclear and solid state physics. Massbauer Sharedﬂ];
1961 Physics Nobel Prize with the American nuclear physicist Robert Hofstadter (who was honoured
for electron-nuclear scattering concerning the structure of the nucleons). Méssbauer spectroscopy b
found wide application in elucidating the nature of the chemical bond in inorganic solid s
chemistry and biological science, for instance, bonding in haemoglobin and oxyhaemoglobin.

Basic Principle of NRF Spectroscopy. Consider the original experiment performed by Massbaer.
Here *'Co decays to the excited state of iron, >’Fe” by electron capture (EC), which further decays

to the stable 3"Fe by the emission of delayed gamma ray (Fig. 54). This latter phenomenon is called
y-ray ﬂuor.escence. In the presence of a target nucleus *’Fe, this gamma ray can be resonantly
absorbed. Since the excited state 'Fe” has a finite life-time (), the uncertainty in the enegy of the

emitted y-ray is governed by the Heisenberg uncertainty principle, AEAf ~# , which can be rewritten

in a slightly different notation as
It~ p ()
where I is the line width and 1 is the life-time of the excited state. From Eq. 46 we see that since

10Ms < 1< 10%s, 104 < T < 10-!1 eV,

[ 57co
" %ﬂ: (t12=2704d)

57Fe -
2

s
2

Y-ray (14-4 keV)
—AANA——

(f172=1-5 x 10-7s)

' |

3TFe
2

e . Schematic simplified diagram'showing e decay of e Fadicaiive 5700 10 TFeL.
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Fig. 58. Tsomer shift and elegqric Quadrupole g1y -
plitting

e
L

)

in “I-’e ener
qmple 47. The Missbauer specteiy 2 levels.

i of i pay
‘r At

l
. Spectra qualitaiyel, l “,;ml"" of one
~ golution & (@) Ka[Fe(CN)gl. A single line Mésshayer

lin :
Y and aceoyng for their n;pe:r:::a“ s
'WS only the effecq of |

. 14~ gnion. being spherically symmetric, g=0 (p; |
iFﬁﬁM q=0 (Fig, efer 1y Fig, 58, SOmer shift because for e

39). Also, 1

-

GAMMA-RAY COUNT S

Mecd 2y 9ol 0 4 % §F 3
. DOPPLER VELOCITY, V (mm s~ \)———
Fig. 59. The Massbaver spectrum of Ky[Fe(CN)gl. 8 #0, g =0

(b) K5[Fe(CN)sNO]. A two-line spectrum shows the effect of both the isomer shift and the quadrupole splitung
because for the [Fe(CN)sNOJ*- anion, being not spherically symmetric, q # 0 (Fig. 60). Also, refer to Fig. 8.

—

GAMMA-RAY COUNT —

ll..:::.t:_.;_-_
—'5—’4-'3-2401’.'34

e

POPPLER VELOCITY, V (s

540,90

' Fig. 60. The Mossbauer spectrufi of Kyl Fe(CN)§NOI. Here

; A The external nuclear
. hynerline n[llitli'nk'}. | term [
3. Nucle ' o called magnetic pu‘i S the magnetic field, B I
Zeeman Spliti"r Z@eman Sphtting (a:ﬁtling of (he nuclear t.'ur,rg_}. IE\.LI. ¥ e order of about 30T,
facy, n the' o818 ChvRec BY .th" L large internal magnedie ¢
£xi the metallic state of iron, very larg

L i effect of isomer shift (d = 0)
5, th fiel litting Fig. 61 shows (he combined ¢
» s field, too, causes huge splitting. Fis:
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pauer_effect cannot be observe i ]i' oy
these stales of matter. Quigs o

be noted_that Mﬁ:?s

not be dissipate

414

for the absorber nucleus. It S]lOUl.d1
¢ because the recoil energy cal e eshauer designed for his experiment i
£ - oriment. The set=up that M“H:.‘ i.e., the source is moved towarg ¥y Si1111:-]
Maéssbauer Experiment. 17 ° eon o the SOUTee, 18 it B S the 3 o
on is give rsity of the emitted gamma rays jg meau'%‘er
Sr.

- 1 B & -4 ]
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Masshauer spectrum is shown in Fig. 57.
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Fig. 56. The Mossbauer spectrometer. ~ Fig..57. A typical Mossbauer spectrum.

More about Missbauer Spectroscopy. Three quantities, called hyperfine interactions, are
smt_:hl?d by Massbauer spectroscopy. There are chemical (isomer) shift (8); nuclear electric quadrupole
splitting (AEp) and nuclear Zeeman splitting.

L. Chemical (Isomer) Shift. As a result of the electrostatic iﬁteraction between the nuclens and

the electrons in a solid, the nuclear ener i i
St iy gy levels are shifted in both orber.
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